3.546 \(\int \frac{A+B \sec (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=181 \[ -\frac{\sqrt{2} (A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{(2 A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{B \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}} \]

[Out]

((2*A - B)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sq
rt[a]*d) - (Sqrt[2]*(A - B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]
])]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) + (B*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec
[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.503087, antiderivative size = 181, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {2955, 4021, 4023, 3808, 206, 3801, 215} \[ -\frac{\sqrt{2} (A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{(2 A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{B \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x])/(Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

((2*A - B)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sq
rt[a]*d) - (Sqrt[2]*(A - B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]
])]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) + (B*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec
[c + d*x]])

Rule 2955

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[((a + b*Csc[e + f*x])^m*(
c + d*Csc[e + f*x])^n)/(g*Csc[e + f*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 4021

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[(B*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/(f*(m + n
)), x] + Dist[d/(b*(m + n)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1)*Simp[b*B*(n - 1) + (A*b*(m +
n) + a*B*m)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b
^2, 0] && GtQ[n, 1]

Rule 4023

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3801

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*a*Sq
rt[(a*d)/b])/(b*f), Subst[Int[1/Sqrt[1 + x^2/a], x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[(a*d)/b, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{A+B \sec (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x) (A+B \sec (c+d x))}{\sqrt{a+a \sec (c+d x)}} \, dx\\ &=\frac{B \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)} \left (\frac{a B}{2}+\frac{1}{2} a (2 A-B) \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{a}\\ &=\frac{B \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}-\left ((A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+a \sec (c+d x)}} \, dx+\frac{\left ((2 A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)} \, dx}{2 a}\\ &=\frac{B \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{\left (2 (A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}-\frac{\left ((2 A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{a}}} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a d}\\ &=\frac{(2 A-B) \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{\sqrt{a} d}-\frac{\sqrt{2} (A-B) \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{\sqrt{a} d}+\frac{B \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.529088, size = 114, normalized size = 0.63 \[ -\frac{\cos \left (\frac{1}{2} (c+d x)\right ) \left (2 (A-B) \cos (c+d x) \tanh ^{-1}\left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-\sqrt{2} (2 A-B) \cos (c+d x) \tanh ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )-2 B \sin \left (\frac{1}{2} (c+d x)\right )\right )}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sec[c + d*x])/(Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

-((Cos[(c + d*x)/2]*(2*(A - B)*ArcTanh[Sin[(c + d*x)/2]]*Cos[c + d*x] - Sqrt[2]*(2*A - B)*ArcTanh[Sqrt[2]*Sin[
(c + d*x)/2]]*Cos[c + d*x] - 2*B*Sin[(c + d*x)/2]))/(d*Cos[c + d*x]^(3/2)*Sqrt[a*(1 + Sec[c + d*x])]))

________________________________________________________________________________________

Maple [B]  time = 0.319, size = 342, normalized size = 1.9 \begin{align*} -{\frac{-1+\cos \left ( dx+c \right ) }{2\,d \left ( \sin \left ( dx+c \right ) \right ) ^{2}a} \left ( 2\,A\cos \left ( dx+c \right ) \sqrt{2}\arctan \left ( 1/4\,\sqrt{2}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \left ( \cos \left ( dx+c \right ) +1+\sin \left ( dx+c \right ) \right ) \right ) -2\,A\cos \left ( dx+c \right ) \sqrt{2}\arctan \left ( 1/4\,\sqrt{2}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \left ( \cos \left ( dx+c \right ) +1-\sin \left ( dx+c \right ) \right ) \right ) -B\cos \left ( dx+c \right ) \sqrt{2}\arctan \left ({\frac{\sqrt{2} \left ( \cos \left ( dx+c \right ) +1+\sin \left ( dx+c \right ) \right ) }{4}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) +B\cos \left ( dx+c \right ) \sqrt{2}\arctan \left ({\frac{\sqrt{2} \left ( \cos \left ( dx+c \right ) +1-\sin \left ( dx+c \right ) \right ) }{4}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) -4\,A\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \cos \left ( dx+c \right ) +2\,B\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sin \left ( dx+c \right ) +4\,B\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \cos \left ( dx+c \right ) \right ) \sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}{\frac{1}{\sqrt{\cos \left ( dx+c \right ) }}}{\frac{1}{\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x)

[Out]

-1/2/d*(-1+cos(d*x+c))*(2*A*cos(d*x+c)*2^(1/2)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(
d*x+c)))-2*A*cos(d*x+c)*2^(1/2)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))-B*cos(
d*x+c)*2^(1/2)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))+B*cos(d*x+c)*2^(1/2)*ar
ctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))-4*A*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c
)+1))^(1/2))*cos(d*x+c)+2*B*(-2/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+4*B*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))
^(1/2))*cos(d*x+c))*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2)/sin(d*x+c)^2/(-2/(cos(d*x+c)+1))^(1/2
)/a

________________________________________________________________________________________

Maxima [B]  time = 2.28476, size = 2037, normalized size = 11.25 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-1/4*(2*(sqrt(2)*log(cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x +
c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 1) - sqrt(2)*log(cos(1/2*arctan2(sin(d*x + c), cos(d
*x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))
+ 1) - log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2
 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x +
c))) + 2) + log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c
)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d
*x + c))) + 2) - log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*
x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c),
cos(d*x + c))) + 2) + log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), c
os(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x +
 c), cos(d*x + c))) + 2))*A/sqrt(a) + (4*sqrt(2)*cos(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*
x + 2*c) - 4*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) + (cos(2*d*x + 2*c)
^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2
 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - (cos(2*d*x + 2*c)^2 + s
in(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*s
in(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c))) - 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d
*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
)) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2
*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 2
*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*s
in(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*
c)))^2 + sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c))) + 1) + 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + sq
rt(2))*log(cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c)))^2 - 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 4*(sqrt(2)*cos(2*d*x + 2*c) + sqr
t(2))*sin(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(1/4*ar
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*B/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
 1)*sqrt(a)))/d

________________________________________________________________________________________

Fricas [A]  time = 0.753037, size = 1507, normalized size = 8.33 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(4*B*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - ((2*A - B)*cos(d*x + c)^2
+ (2*A - B)*cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 + 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(c
os(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)
) - 2*sqrt(2)*((A - B)*a*cos(d*x + c)^2 + (A - B)*a*cos(d*x + c))*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt((a*cos
(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2
*cos(d*x + c) + 1))/sqrt(a))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c)), 1/2*(2*sqrt(2)*((A - B)*a*cos(d*x + c)^2
 + (A - B)*a*cos(d*x + c))*sqrt(-1/a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt(c
os(d*x + c))/sin(d*x + c)) + 2*B*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + ((2
*A - B)*cos(d*x + c)^2 + (2*A - B)*cos(d*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x
+ c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(a*d*cos(d*x + c)^2 + a*d*co
s(d*x + c))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)**(3/2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \sec \left (d x + c\right ) + A}{\sqrt{a \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)/(sqrt(a*sec(d*x + c) + a)*cos(d*x + c)^(3/2)), x)